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One-electron resonances in electron scattering from 
polyatomic molecules 

by ROBERT R. LUCCHESET and F. A. GIANTURCO$ 
t Department of Chemistry, Texas A&M University, College Station, 

Texas 77843-3255 USA 
$ Department of Chemistry, The University of Rome, 

Cittil Universitaria, 00185, Italy 

One-electron resonances in electron scattering from polyatomic molecules were 
examined using set of interconnected models. We compared resonant states 
predicted from the virtual orbitals of a minimum-basis-set self-consistent-field 
(MBS-SCF) calculation with scattering resonances found using both a purely local 
model potential for the electron-molecule interaction based on an adiabatic 
separation of the angular and radial motion and a more accurate exact-static- 
exchange-plus-model-correlation-polarization interaction potential. Considering 
electron scattering from Nz, SF6, and C6H6, we found that the MBS-SCF virtual 
orbitals were an excellent predictor of the symmetry and approximate location of 
one-electron resonances. The adiabatic radical potentials were very useful in 
understanding the mechanism for resonant trapping, although strong non-adiabatic 
coupling sometimes required more than one adiabatic potential to be considered to 
accurately represent the resonant dynamics. The essential feature of the trapping 
mechanism for each of these systems was an angular momentum barrier found in 
one of its adiabatic potentials. 

1. Introduction 
Electron-molecule scattering is an elementary step in a wide variety of important 

processes and systems. These include processes in areas such as astrophysics, planetary 
atmospheres, lasers, and radiation physics. An example of an area of intense current 
interest is given by electron-molecule scattering processes which occur in cold plasmas 
used for a wide variety of materials processing, including semiconductor device 
fabrication (Grill 1994). Thus there is a continuing effort to develop the necessary 
experimental and theoretical tool for studying these processes (Shimamura and 
Takayanagi 1984). 

Electrons scattering from molecules can be subject to a number of resonant 
processes. Within the Born-Oppenheimer approximation, electronic motion is often 
assumed to occur on a time-scale which is short compared to molecular vibrations. 
However, there are a number of instances where this assumption breaks down. For 
example, as a scattering electron leaves the vicinity of the target molecule, if the electron 
is moving slowly enough, the time-scale for electronic and nuclear motion can be 
comparable. A particularly dramatic example of the breakdown of the Born-Oppen- 
heimer approximation is the case of scattering from a molecule with a dipole moment. 
In the fixed nuclei (FN) approximation, the total cross-section diverges due to the long 
range of the electron-dipole interaction. However, when the rotational motion of the 
molecule is included in the scattering problem, the averaging of the interaction potential 
over the rotation of the molecule removes the divergence in the total cross section 
(Garret 1972). 
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430 R. R. Lucchese and F. A. Gianturco 

Within the FN approximation one can use the Hartree-Fock (HF) approximation 
to qualitatively describe electron-scattering resonances. The positive-energy canonical 
HF orbitals are exactly the one-electron wavefunctions for scattering from an Nelectron 
closed shell target within the static-exchange approximation (Lane 1980). In general 
the canonical HF orbitals provide a good one-electron basis set for expanding the full 
N + 1 electron scattering state. The unoccupied HF orbitals are usually referred to as 
virtual orbitals. 

In electron-molecule scattering, if the target state can be accurately represented by 
the HF wavefunction, the asymptotic scattering state can be described by a single Slater 
determinant formed from the antisymmetrized product of the occupied HF orbitals and 
one additional positive energy scattering orbital. The resonant processes can then be 
characterized by the number of electron excitations and de-excitations needed to obtain 
the resonant state from the single determinant asymptotic scattering state. Most 
resonances involve only one or two-electron excitations or de-excitations (Burke 1968, 
Hall and Read 1984, McDaniell989). A typical two-electron resonance is characterized 
by a quasi-bound electronic state which decays into the scattering continuum by two 
electrons changing orbitals, e.g. with two electrons initially in excited bound orbitals, 
one electron drops to a lower bound orbital and the other electron is excited into the 
continuum. A one-electron resonance is characterized by an N + 1 electron state where 
a single electron is in a one-electron state above the energy required to leave the system 
but is temporarily trapped either by a dynamic or static barrier. 

Experimentally, a resonance causes a modulation in the scattering cross-section as 
a function of the scattering energy. If there is little background scattering, the resonance 
will yield an isolated peak in the cross-section (Taylor 1972). In addition to causing 
a peak in the elastic cross-section, one-electron resonances also are an important 
mechanism for vibrational excitation of molecules (Herzenberg 1984). The resonant 
vibrational excitation process can be illustrated by assuming that a molecule is initially 
in its ground state. Then when the electron becomes temporarily trapped in the resonant 
state, the nuclei of the molecule begin to move on the Born-Oppenheimer potential 
energy surface which is characteristic of the negative ion. Usually the ground state and 
negative ion state potentials are displaced with respect to one another, thus on the 
potential of the negative ion in the nuclei find themselves in a vibrationally excited state. 
Depending on the lifetime of the resonance this can lead to a vibrational excitation of 
the molecule when the electronic state decays back to the ground state through ejection 
of the trapped electron. 

Theoretically, a resonance is characterized by the asymptotic phase shift of the 
scattered wave rising rapidly through n: as a function of the scattering energy (Taylor 
1972). This rapid rise in the eigenphase sum can be shown to be characteristic of a time 
delay in the scattering process, i.e. the scattered electron is temporarily trapped in the 
vicinity of the molecule. The scattering process can also be characterized by the energy 
dependence of the S scattering matrix. By analytically continuing this matrix to complex 
energies, one can show that the rapidly rising phase shift at real energies is due to a 
pole of the S matrix near the real energy axis in the lower half of the complex energy 
plane at an energy E given by 

where ER is the energy and r is the width of the resonance. 
This paper is concerned with low energy one-electron resonances in electron- 
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Figure 1. Schematic illustration of an angular momentum barrier resonance. The energy of the 
resonant state is indicated by the horizontal line. 

molecule scattering. We will examine when they typically occur in electron-molecule 
scattering and what the mechanism is for the trapping of the electron. In atomic systems 
and in small molecule systems where there is spherical (or near spherical) symmetry 
the one-electron scattering problem is decoupled into states which are eigenfunctions 
of the angular momentum. For a given value of the angular momentum the differential 
equation for the radial wave function then contains an effective radial potential of the 
form (in atomic units) 

If the spherically symmetric potential V(r)  is attractive, then for some values of I > 0 
it is possible that the potential has an inner well with a barrier through which an electron 
can escape to large r, as schematically illustrated in figure 1. For such a potential, it 
is then possible to have a pseudo-bound state of the potential at positive energies which 
can slowly decay as the electron escapes through the potential barrier by tunnelling. Due 
to the relationship between the shape of the potential and the resonant state such 
one-electron resonances are referred to as ‘shape resonances’ (McDaniel 1989). 

In molecular systems in the FN approximation, the interaction potential between 
the scattered electron and the target is not spherically symmetric. Although it is 
sometimes useful to think qualitatively of the interaction potential as being spherically 
symmetric, the non-spherical part of the potential couples states of different angular 
momenta, generally shortening the lifetime of any resonant state. 

One mechanism for trapping resonant states in molecular systems which has been 
proposed (Dehmer 1972, Swanson et al. 198 1) for systems with electronegative atoms 
is trapping by a potential barrier due to a repulsive interaction with the electron-rich 
electronegative atoms. This repulsive interaction would be purely electrostatic in nature 
and thus not dependent on high angular momentum for the trapping. However, as has 
been pointed out previously (Natoli 1983), for a system such as SFg a calculation of 
the interaction potential reveals that the potential is purely attractive so that electrostatic 
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432 R. R. Lucchese and F. A. Gianturco 

interactions cannot provide the required barrier for trapping the electron. Note that for 
systems of lower symmetry than that possessed by SF6 there will be some directions 
of electron motion in which there is an electrostatic barrier. However, there is not a 
definitive example where electrostatic barriers have been shown to be the source of the 
trapping of a resonant state. 

A refinement of the radial angular momentum barrier model for molecular shape 
resonances is the adiabatic potential model (Le Dourneuf et al. 1982, Lan et al. 1983, 
Battaglia and Gianturco 1989, Gianturco 1992). In this approach an effective radial 
potential is obtained by making an adiabatic separation of the angular and radial modes. 
Thus, within a single-centre expansion, at each r an angular Schrodinger equation is 
solved. The eigenvalues of the angular motion at that r are then the values of the 
adiabatic radial potential at that r. Excluding the case of the dipole scattering problem, 
the adiabatic potentials coincide with the usual single-centre-expanded effective radial 
potentials at large and small values of r since in those limits the angular momentum 
term dominates the angular Hamiltonian. In the simplest approximation, the 
non-adiabatic radial coupling is ignored and the resonance is just obtained as a 
pseudo-bound state on a single adiabatic potential trapped behind an angular 
momentum barrier. This approach can explain the trapping mechanism of many 
molecular shape resonances, however as we will illustrate below for e-Nz and e-SF6 
scattering, the non-adiabatic couplings can be crucial elements in the mechanism for 
trapping the resonant electron. An additional limitation of this approach is that it can 
be most simply implemented and interpreted for purely local potentials, while it is well 
known that an accurate representation of the exchange interaction necessarily requires 
the inclusion of non-local potentials (Morrison and Collins 1981). Here we will give 
some illustrative examples where we used an appropriate model potential to understand 
the molecular shape resonance on a semi-quantitative level, although such an approach 
could not in general reproduce all quantitative details of the scattering with the full 
non-local potential. 

Another approach which has been suggested for understanding the appearance of 
shape resonances in electron-molecule scattering is to examine the virtual HF orbitals 
which are obtained by performing the HF calculation in a one-electron basis set limited 
to a single atomic centred basis function for each core and valence atomic orbital of 
the constituent atoms of the molecule (Gianturco et al. 1972, Langhoff 1984). We will 
refer to this calculation as a minimum basis set self-consistent field (MBS-SCF) 
calculation. With the additional proviso that for second row atoms (Na-Ar) and below 
in the periodic table, the set of orbitals found in this fashion seem to include states which 
strongly resemble the shape resonant states. Langhoff and coworkers (Sheehy et al. 
1989) have given examples where the MSB-SCF virtual orbitals provide a good 
representation of the resonant state within the Feshbach-Fano formalism. The concept 
of partitioning the scattering wavefunction into a resonant part and a non-resonant part, 
which is the basis of their approach, can provide a framework for computing resonant 
lifetimes and cross-sections, however, it does not provide any insight into the 
mechanism of trapping in the one-electron scattering resonances in electron-molecule 
scattering. 

In this paper we report the results of studies of the occurrence of negative-ion shape 
resonances in a few representative systems (N2, SF6, C6H6). We used an accurate 

- numerical scattering method to establish the existence and width of the resonances. We 
then examined in detail the relationship between these resonances and the resonances 
found on a local model potential. The resonances on the local model potential were 
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One-selection resonances 433 

located using the analytic properties of the S matrix and previously developed pole 
finding methods (Stratmann and Lucchese 1992). The resonant state at the complex 
energy was then compared to the MBS-SCF virtual orbitals. Finally, a detailed analysis 
of the solution of the adiabatic radial potential model, with non-adiabatic couplings, 
revealed the combination of static and dynamic features which were important in 
trapping the resonant state. 

2. Methodology 
The nature of electron-molecule shape resonances was studied using a static-ex- 

change-correlation-polarization (SECP) FN scattering calculation as our most accurate 
calculation. The resulting scattering equations were solved using a single-centre-expan- 
sion method which has been described in detail elsewhere (Gianturco and Jain 1986, 
Gianturco et al. 1994). In the present paper we will only outline the procedure used. 
Although this level of calculation reproduced the main features of the scattering process 
at low energy, it was difficult to analyse the qualitative aspects of the scattering process 
due to the complexity of the numerical model. In order to obtain a clear picture of the 
resonant process we also performed somewhat simplified model calculation. 

2.1. Fixed-nuclei scattering equations 
The electron-molecule scattering problem is significantly complicated by the need 

to couple the vibrational motion with the motion of the scattered electron. Although the 
Born-Oppenheimer approximation may be appropriate to describe the bound electrons 
in the system, at low energy the continuum electron can be strongly coupled to the 
nuclear kinetic energy. However, the essential nature of the shape resonance can still 
be examined using the FN approximation since the resonant state involves the scattered 
electron being temporarily trapped near the nucleus where the FN approximation is most 
valid for the scattered electron (Chang and Fano 1972). In the FN approximation the 
Schrodinger equation for the electronic motion is given by 

H Y ( r , X )  = E!P(r,X), (3)  

where 

H = f + $' + Htarg. (4) 

In equation (4) ? is the kinetic energy operator of the incident electron and 9 is the 
interaction with the target given by 

N M 

j =  I y = l  

Hmg is the electronic Hamiltonian for the target electrons, and r is the position of the 
continuum electron. The symbol X represents collectively the coordinates of the target 
electrons xi(i = 1, . . . , N) while the positions of the nuclei with charge 2, are denoted 
by R,(y = 1, . . . , M>. The electronic Schrodinger equation is then reduced to a set of 
coupled one-particle equations by expanding the total electronic wavefunction Y in 
eigenstates of the target Hamiltonian as 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



434 R. R. Lucchese and F. A. Gianturco 

such that 

fitalg#a(X) = Ea#a(X), (7) 
where A! is the antisymmetrization operator and is the electronic eigenvalue for the 
c( asymptotic target state. Inserting equation (6) into equation (3), multiplying on the 
left with the conjugate of one of the target eigenstates, and integrating over the target 
electron degrees of freedom leads to coupled partial integrdifferential equations 
(IDEs) of the form 

[$V2 + ( E  - ~ ~ ) ] $ ~ ( r )  = Vup(r, r’)$p(r’) d3r‘. (8) 
B I 

The kernel of the integral operator for the potential, Va@, is in general a sum of diagonal 
(local potentials) and non-diagonal (non-local potentials) terms. The explicit expression 
for V u ~  then depends on the form of the target states used in the expansion given in 
equation (6). 

2.2. Single-centre expansion 
There are a variety of ways for solving the scattering equations given in equation 

(8). Usually, the target states are computed using standard bound state methods where 
the one-electron functions are constructed from atomic centred basis functions (Hehre 
et al. 1986). This approach has been adapted to the scattering problem in several ways 
including the Schwinger-multichannel method (Takatsuka and McKoy 198 1, Lucchese 
et al. 1986) and the complex-Kohn method (Schneider and Rescigno 1988). 

Alternatively, there are a number of single-centre expansion methods which have 
been developed where all three-dimensional scattering functions are expanded in a set 
of symmetry adapted angular functions and where the corresponding radial functions 
are represented on a numerical grid (Gianturco and Jain 1986). In this approach an 
arbitrary three-dimensional function FP@(r, 8, #) is expanded as 

where the function transforms as the pth element of the pth irreducible representation 
(IR) of the point group of the molecule. The functions Xf{ are generalized harmonic 
functions which are eigenfunctions of L2 given by symmetry-adapted linear 
combinations of the spherical harmonics Ylm(8, #) of the form 

m 

Further details about the computation of the Him have been given elsewhere (Gianturco 
et al. 1994). 

Once all three-dimensional functions have been expanded using equation (9), the 
scattering equations given in equation (8) are reduced to a set of ordinary linear IDEs 
of the form 

2.3. Static exchange potential 
One simple approximation for the target wavefunctions is to write &(X) as a single 

Slater determinant constructed from a product of one-electron molecular orbitals. 
Within that approximation one can apply the variation principle for the energy to obtain 
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One-selection resonances 43 5 

the best one-electron functions. This procedure yields the HF wavefunction for the 
target state. If the one-electron functions are expanded in a finite one-electron basis 
set, the solution which produces the lowest variation energy is referred to as the 
self-consistent-field (SCF) solution (Schaefer 1972). 

Using the HF or SCF solution for the target and truncating the expansion over target 
states in equation (6) to one state leads to the static-exchange (SE) approximation for 
the potential in equation (8) (Lane 1980). For a target which has a closed shell electronic 
structure with nocc doubly occupied orbitals, 4i, this potential can be written as 

M noCc 

y =  1 i =  I 
VSE= c zylr-Ryl- '  + c 2.&-$, (12) 

where ji is the usual local static potential defined by 

and ki is the non-local exchange potential operator defined by 

Electron-molecule scattering cross-sections computed using the Se potential are 
usually in fairly good agreement with experimental total scattering cross-sections. 
However, a major deficiency in the SE model for studying negative ion resonances is 
the lack of target response, i.e. electron correlation, in the scattering process. At higher 
energies, this is reflected in the fact that electronically inelastic processes are not 
obtained in the single-channel SE approximation. Such effects can be studied with the 
distorted-wave approximation using the SE wavefunctions as the distorted waves (Lee 
et al. 1982). Alternatively additional target states can be included in the expansion of 
the wavefunction. At low energies, the lack of target response leads to the neglect of 
important polarization effects. This can significantly alter the energy and width of 
resonances which occur below a scattering energy of - 10eV. 

2.4. Model correlation-polarization potential 
Target polarization can be included in a number of ways. The most straightforward 

approach is to include more states in the wavefunction expansion. These additional 
states can be either eigenstates of Hmg or they can be chosen to be pseudo-states whose 
inclusion accurately reproduce the static and low-frequency polarizability of the system 
(Burke and Mitchell 1974, Schneider 1977). A second approach is to include the 
appropriate optical potential. Such a potential can be computed by purely ab initio 
means (Klonover and Kaldor 1978). An alternative approach which we have used is 
to include the effects of correlation and polarization through the addition of a local, 
energy-independent model potential V&r) (Perdew and Zunger 1981, Padial and 
Norcross 1984, Gianturco et al. 1987). Briefly, this potential contains a short-range 
correlation potential smoothly connected to a long-range polarization potential. The 
short-range correlation potential Vc is obtained by defining an average correlation 
energy of a single particle, within the formalism of the Kohn and Sham variation 
theorem, and by obtaining the short-range correlation forces as an analytic function of 
the target electron density. The long-range polarization potential Vp is obtained by first 
constructing a model polarization potential which asymptotically agrees with the 
potential obtained from the static polarizability a of the molecule (Gianturco et al. 
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436 R. R. Lucchese and F. A.  Gianturco 

1994). This corresponds to including the first term in the second-order perturbation 
expansion of the polarization potential. This model potential can be either constructed 
assuming a single polarization centre, or by partitioning the static polarizability to 
different centres giving the form 

where the individual atomic polarizabilities are estimated using analogous molecules 
subject to the constraint that the total molecular polarizability is reproduced, i.e. 

M 

a =  c, a)’. 
y = 1  

In general the long-range potential given in equation (15) does not exactly match the 
short-range potential VC at any given value of r. To select an appropriate matching 
radius, rmatch, to connect these two potentials, we first expand both Vp and VC in a 
single-centre expansion. Then we find the radii where the two I = 0 radial potentials 
intersect. In all cases considered to date, these potentials cross at two values of 1. 
Empirically we found that the best matching radius is the smaller of these two radii 
where the I = 0 potentials cross. Then the final definition for the model correlation- 
polarization potential is 

where the values of clm have been determined so that potential is continuous at rmkh 
and where A(Z) is a function of 1 such that A = 6 , 5 , 6  for 1 = 0, 1,2 and A(1) = 1 + 2 for 
I2 3.  The function A(Z) was chosen so that the term added to VP has the same functional 
form as the first term neglected in the perturbation expansion of Vp. The static-exchange 
correlation-polarization (SECP) scattering potential we then used for the full scattering 
problem VSECP was just the sum of the VSE defined in equation ( 1  2) and VCP defined in 
equation (17). 

2.5. Model exchange potential 
Although we solved the scattering problem using VSECP we also utilized a purely 

local approximation to this potential where the non-local exchange potential was 
replaced by an approximate local model exchange (ME) potential denoted by V m .  For 
this purpose we have used the Hara free-electron-gas-exchange (HFEGE) potential 
(Hara 1967, Salvini and Thompson 1981). In VME, the exchange interaction is 
approximated by an energy-dependent local function of the electron density of the 
target. We found that the energy dependence of the HFEGE potential was fairly weak 
so that scattering results over a given range of energies where the mean energy was used 
in the HFEGE potential were very similar to the results where the actual scattering 
energy was used to compute the HFEGE potential. As discussed below, we have used 
both of these forms of the H E G E  potential. The potential where the model exchange 
was used in place of the exact exchange will be referred to as the static-model-exchange- 
correlation-polarization (SMECP) potential VSMECP. When a fixed energy is used in the 
model exchange potential we will indicate the energy in eV. For example the SMECP 
potential with a fixed energy of 15 eV used to compute the HFEGE potential will be 
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One-selection resonances 43 7 

denoted VSME(I~)CP. The HFEGE potential is known to give fairly reliable results when 
compared to SE results, however the HFEGE tends to be somewhat less attractive than 
the true non-local exchange potential (Morrison and Collins 1981). 

2.6. Solution of the Scattering equations 
The scattering cross-sections corresponding to a given solution of the scattering 

equations given in equations (1 1) can be obtained using a variety of approaches. When 
the scattering potential is purely a local potential, standard differential equation 
integrators can be used to obtain the wavefunction (Lesser 1968). The asymptotic form 
of the wavefunction is then analysed to obtain the appropriate scattering matrix from 
which total and differential cross-sections can be computed. When the potential given 
in equation (1 1) contains non-local terms an alternative approach must be used. We have 
developed a particularly powerful approach based on the Schwinger variational 
expression for the scattering matrix with Pad6 approximant corrections (Lucchese and 
McKoy 1983, Gianturco et al. 1994). 

In the Schwinger-Pad6 approach, the total scattering potential VT is written as the 
sum of an approximate local potential VL and the difference between the local 
approximation and the full non-local potential which is denoted by VD. Thus to obtain 
the cross-section with VT = VSECP we used VL = V S M ~ ~ ~  so that the difference potential 
is VD = V~ECP - VSMECP. Equation (1 1) can then be transformed into an integral equation 
of the form 

where $p is a solution of the purely local potential problem 

H L $ ~  = E4p. 

The local Hamiltonian is given by HL = - +V2 + VL and the Green function is defined 
by 

( E  - HL)& = 1.  (20) 

Using the K matrix to define the asymptotic form of the scattering solutions, we can 
then write the K matrix for the full potential as 

where K(L) is the K matrix due to scattering from VL and K(D) is the correction term 
which can be obtained from 

The expression for the correction to the K matrix given in equation (22) can be 
expanded using the Born series to give 

Using numerical techniques previously discussed (Gianturco et al. 1994), it is possible 
to compute the action of the 6 and VD on any arbitrary function and thus to obtain all 
of the matrix elements given in equation (23). The convergence of this sum can be 
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438 R. R. Lucchese and F. A. Gianturco 

e-SF, 

greatly enhanced by using the "IN] Pad6 approximant of the form 
N- 1 

Kg'"IN1 = - 2 2 (4plvD(%vD)il4q)D[ '(@plVD(&VD)'ld'q), (24) 
i , j=O 

where DOT is the (i, j)th element of D - which is the inverse of the matrix D with 
elements 

(25) 
The expression for the K matrix given in equation (24) can be shown to be equivalent 
to the Schwinger variational expression for the K matrix with the appropriate choice 
for the linear variational trial functions used in the variational expression (Nuttall967). 
This approach for computing scattering amplitudes has been found to be rapidly 
convergent with respect to the order of the Pad6 approximant in a wide variety of 
applications. 

Djj = ( 4p/ VD(&~D)" +' - v~(&v~)1+'+ 14,). 

2.7. Piece-wise diabatic potential 
The main focus of this paper is to examine in some detail the mechanism and 

qualitative characteristics of one-electron resonances. Clearly this study required a 
model which was simple enough to be clearly understood but included sufficient details 
of the full scattering problem to accurately reproduce the essential features of the 
resonant process. The SECP potential reproduced most of the important aspects of 
low-energy negative-ion shape resonances. However, we have found that the 
non-locality of the interaction potential made a clear identification of the mechanism 
for the resonant trapping difficult. Thus we further simplified the model used to study 
the resonances by employing the purely local potential VSMECP. Although it was 
certainly possible that the non-locality of V s ~ p  could have provided an additional 
mechanism for resonant trapping, the excellent qualitative agreement between results 
obtained using exact exchange and local model exchange potentials gave us confidence 
that the resonant trapping mechanism was the same for both potentials. 

401 I 

E (eV) 
Figure 2. Total scattering-cross section for e-SFa collisions: (-) SECP cross-section; (- - -) 

SMECP cross-section; (0) experimental results (Dababneh et al. 1988); (0) experimental 
results (Kennerly et al. 1979). 
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One-selection resonances 439 

In figure 2 we compare the SECP total electron-molecule scattering cross-sections 
for e-SFa (Gianturco et al. 1995) to the results obtained using the SMECP potential and 
to available experimental total scattering cross-sections (Kennerly et al. 1979, 
Dababheh et al. 1988). There were four resonances which appeared in the theoretical 
cross-sections. The symmetries, energies, and widths of the theoretically predicted 
shape resonances are given in table 2. The resonances in the SECP and SMECP 
cross-sections were of approximately the same width and differed in location by at most 
2 eV. The agreement with experiment was similar, with the SECP resonances being a 
few eV higher than the three lower experimentally observed resonances. However, there 
is no clear experimental evidence for the resonance at 28eV. This resonance has 
appeared in all other theoretical FN scattering cross-sections (Dehmer et al. 1978, 
Gyemant et al. 1980). The discrepancy between theory and experiment could either be 
due to the effects of nuclear motion or due to additional broadening of the resonant state 
caused by decay into other open asymptotic electronic states which were neglected in 
the calculation of all theoretical cross-sections reported to date. Although the agreement 
between the experimental and theoretical cross-sections was not quantitative, the close 
correspondence between experiment and theory indicated that scattering by the SMECP 
potential provided an accurate understanding of the mechanism of trapping of 
negative-ion shape resonances in electron-molecule scattering. 

The standard symmetry adapted angular momentum eigenstates, a:, which do not 
form the most compact angular basis set for the electron-molecule scattering problem. 
An alternative expansion basis set is the angular eigenfunctions obtained from 
diagonalizing the angular Hamiltonian at each radius r (Le Dourneuf et al. 1982, Lan 
et al. 1983, Battaglia and Gianturco 1989, Gianturco 1992). The angular functions 
obtained in this fashion are referred to as the adiabatic angular functions Z$p(O, 4; r) 
which are linear combinations of the symmetry adapted harmonics 

z$v, 4; r) = C xwe, ~ ) c ~ ~ , ~ ( Y ) ,  
Ih 

where the expansion coefficients are solutions to the matrix eigenvalue equation 

Ih 

The eigenvalues Vt( r )  then form an adiabatic radial potential. 
Solving the scattering equations using VA(r) can have several advantages (Lan 

et al. 1983). First the expansion of the scattering wavefunction in adiabatic angular 
states converges more rapidly than the corresponding expansion in angular momentum 
eigenstates. Thus the number of coupled radial equations which must be solved at a 
certain level of accuracy is much smaller with the adiabatic basis set. The second 
advantage is that the numerical instabilities found in the solution of the standard 
momentum eigenfunction expansion given in equation (1 1) are greatly reduced. The 
third advantage is that often a single radial adiabatic potential is responsible for the 
appearance of a shape resonance. In such cases the adiabatic potential can be used to 
understand the main features of the resonant state. The spatial extent of the resonant 
wavefunction can be determined from the well and angular momentum barrier, and the 
physical mechanism for the resonant trapping is the slow rate of tunnelling through the 
potential barrier. One drawback to the adiabatic potential approach is that the 
non-adiabatic radial coupling introduces additional terms in the radial differential 
equations for which the standard integration method is not directly applicable. 
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440 R. R. Lucchese and F. A. Gianturco 

In order to avoid the non-adiabatic coupling terms, we actually employed a 
piece-wise diabatic (PD) representation for the potential (Lan et al. 1983). In this 
approach the radial coordinate is divided into a number of regions so that region i is 
defined as ri - < r < ri,, where ro = 0. In each radial region we averaged the coupling 
potential VI‘h’,[h(r) over r and the resulting averaged potential was diagonalized as in 
equation (27) to yield a set of angular functions Zf$(O, 4). Then in region i the scattering 
potential was transformed into the new representation in which it was nearly diagonal. 
The resulting equations could then be solved using the full scattering potential in each 
region. A further approximation we made was to ignore the off-diagonal coupling in 
each region. If the regions were small enough this was a very good approximation. 

The key step in solving the radial equations using the PD approach was matching 
the radial functions and their derivatives at the boundary between radial regions. The 
transformation of the radial functions from one region to the next was given by the 
transformation matrix U t ;  ti) defined by 

When the size of the angular momentum eigenfunction basis used was larger than the 
size of the diabatic angular basis set, the transformation matrix U;kf.lti) was not in 
general unitary. In order for the unitarity of the S matrix to be maintained, it was 
essential to modify U[kf. t i )  so that it was unitary. We accomplish the unitarization of 
U$$ ti)  using simple Graham-Schmidt orthonormalization on the columns of u[ kf. 1 + 0.  

To illustrate the use of the PD representation of the potential, in figure 3 we give 
the form of the diagonal elements of the piece-wise diabatic SME(15)CP, i.e. 
PDSME( 15)CP, potential computed for e-SF6 scattering for the four resonant scattering 
symmetries. These potentials were constructed using 27 diabatic regions between the 
origin and r = 14.2 a.u. As can be seen in this figure, the regions were chosen so that 
there is no appreciable discontinuity of the diagonal elements of the potential at the 
region boundaries ri. In figure 4 we compare the eigenphase sum in the tzg scattering 
symmetry obtained from solving the full SME(15)CP potential, using the standard 
expansion in angular momentum eigenfunctions with 64 angular functions including 
all functions up to 2 = 30, with that obtained from the PD potential using 10 PD channels 
where the off-diagonal elements were ignored inside of each diabatic region. The 
scattering from the PDSME( 15)CP potential is seen to have accurately reproduced the 
full SME( 15)CP scattering results with many fewer radial channels. 

2.8. Direct determination of resonant states 
A narrow and isolated resonance in a scattering process at an energy ER and width 

r can be shown to be due to a pole in the S matrix which has been analytically continued 
into the complex plane at an energy E = ER - i(r/2) (Taylor 1972). The S matrix is 
obtained from a scattering wavefunction by finding a solution with the asymptotic form 

where h: (kr) and h; (kr) are the appropriate Hankel functions. Then it is possible to 
compute directly the S matrix at complex energy by computing the solution using the 
standard numerical procedures with a complex valued energy and by matching the 
solution to the Hankel functions with the appropriate complex argument. A resonance 
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One-selection resonances 44 1 

energy in the scattering process can be located by finding those energies at which 
0 = Udet S. 

The approach for directly computing resonance positions by locating the poles in 
the S or equivalently the T matrix has been previously employed to study resonances 
in the photoionization process with an exact SE interaction potential. The previous 
application was based on the use of the Schwinger variational expression equivalent 
to equation (24) given above (Stratmann and Lucchese 1992). In that approach the 
resonance parameters are computed by locating the values of the conlplex energy where 
det D = 0. 
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75 - 

50 - 

25- 
1 3 
L 
Y ' 0 -  

-25 - 

Figure 3. PDSME( 15)CP potentials for e-SF6 scattering. At large and small values of r the PD 
radial potentials given here were identical to the pure diabatic effective radial potentials 
one would obtain using the symmetry adapted angular momentum eigenfunctions Xf'. The 
values of I given in the figures indicate which diabatic effective potential a particular PD 
potential approached at large and small values of r. 
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I 
10 15 20 25 30 

E (eV) 
Figure 4. Comparison of eigenphase sums for e-S& scattering in the tzg scattering symmetry: 

(-) SME(15)CP potential; (- - - -) PDSME(15)CP potential. 

Locating zeros in an arbitrary complex valued function of a complex argument can 
be a non-trivial task. The approach we used has been discussed in detail elsewhere 
(Stratmann and Lucchese 1992). Here we will only outline the methodology. The 
essential difficulty in locating the zeros of a function such as l/det S is that there are 
generally a great many such zeros. However most of those zeros occur at energies far 
away from the real E axis and thus do not represent resonant scattering states. In order 
to define the problem, one must first identify the region in the complex plane where 
zeros need to be located. For example in the electron-molecule scattering problem 
considered here, we defined the search region as including all energies with real parts 
between 0-0 and 40-0 eV and with imaginary parts between 0-0 and - 25-0 eV. Within 
this region, a series of overlapping strips in the energy plane were defined. Within each 
strip we then located all zeros. 

To locate the zeros within a given strip, one first computes the value of the function 
at a grid of energies which cover the strip. The function is then approximated in this 
strip by a sum of a set of orthogonal fitting polynomials whose coefficients are 
determined by a least-squares fit of the value of the function at the evaluation points. 
Typically one uses fitting polynomials which have a maximum order approximately 
equal to half the number of points in the fit. This implicitly allows the higher order 
polynomials to serve as dealiasing functions (Friesner 1986). Once the polynomial fit 
has been determined, all zeros of the polynomial can be located using Muller’s method 
(Press et al. 1986) which is a standard root finding method. Of course one can verify 
that all of the roots of the polynomial have been found since the number of roots is just 
the order of the polynomial. 

After all the zeros of the approximating polynomial have been located within the 
current strip of interest, the original function l/det S is evaluated at the location of the 
estimated zeros. The new points are then added to the set of original fitting points and 
a new polynomial is obtained. Note that in the least-squares fitting procedure, the weight 
of a given point is taken to be inversely proportional to the absolute square of the 
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function at that point. Thus, as the location of the zeros becomes better defined, only 
those points near the zero will be important in the fitting process. The zeros of the new 
polynomial are then located. This process is repeated until the positions of the zeros 
have converged and the values of the actual function are sufficiently small. 

Once the zeros of l/detS in the region of interest have been located, the actual 
scattering state at that complex energy can be computed. We analysed these resonant 
scattering functions in terms of their radial functions and as full three-dimensional 
functions. One interesting observation which has been made previously is that the 
resonant states seem to correspond to the virtual orbitals from an MBS-SCF calculation. 
Here we could explicitly compare the resonant state with the virtual orbital computed 
in this manner. The scattering states computed in this fashion were also similar to the 
resonant eigenchannel functions which have been used in the study of resonant states 
in electron molecule scattering (Loomba et al. 198 1). One advantage of the approach 
used in this study was that it avoided the ambiguity concerning which state was the 
resonant state. This ambiguity occurs when the resonant change in the eigenphase sum 
is not confined to a single eigenphase. Another advantage of the resonant state approach 
was that the background scattering has been removed from the scattering state thus 
making the resulting functions easier to interpret. Finally, as we will see below, the 
ability to analyse the scattering process in terms of the adiabatic scattering potentials 
lead to considerable insight into the mechanism for the resonant trapping. 

3. Applications 
3.1. Electron-Nz scattering 

Resonant electron scattering from Nz is certainly the most studied electron- 
molecule scattering resonance (Takayanagi 1984). We have applied our procedure for 
studying resonances to this case to verify how well our approach reproduces the 
accepted understanding of the resonance in this system. The scattering resonance we 
have considered in this system is the 211g scattering resonance which occurs at a 
scattering energy of - 2.5 eV and is due to the scattering of an electron in a 7tg orbital 
which is trapped in an angular momentum barrier. 

We have studies this resonance using the SECP and SME(2.3)CP potentials. The 
eigenphase sums for scattering in the ng symmetry is given in figure 5. The computed 
eigenphase sums were fitted to a Breit-Wigner form to extract the resonance parameters 
using the functional form (Taylor 1972) 

(30) 

Using this functional form we found the resonance parameters for these calculations 
as reported in table 1.  Thus we can see that the PD potential can provide a good 
representation of the resonant state. Additionally, we found the scattering resonance 
when only one PD potential was included as given in table 1. The PDSME(2.3)CP 
potential for the xg scattering channel is given in figure 6.  The resonance in the scattering 
on the single adiabatic potential was clearly due to trapping behind the barrier in the 
I = 2 adiabatic potential which had a peak value in the barrier region of 6.34eV at 
r = 2.69 a.u. As additional PD potentials were coupled together, the results given in 
table 1 show that the position and width of the resonance converged rapidly to the result 
obtained from the full potential. Thus we concluded in the case of the 7cg resonant 
scattering that the mechanism for the resonant trapping was the angular momentum 
barrier in the adiabatic potential which asymptotically correspond to 1 = 2. 

r 
[2(E - ER)]. 

6(E) = a + b(E - ER) + c(E- ER)* + tan-' 
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G 
2t; 

3 

2.5 

2 

1.5 

1 

0.5 

0 

E (ev) 
Figure 5. Comparison of eigenphase sums for e-N2 scattering in the ng scattering symmetry: 

(-) SECP potential; (- - - -) SME(2.3)CP potential. 

Table 1. Position and width of resonant states in e-N2 scattering. 

Calculation E R ( ~ V )  r ( e v )  

Resonances of ng scattering symmetry 
MBS-SCF 7.70 
PDSME(2.3)CP, I = 2 1.56 
PDSME(2.3)CP, I = 2,4 2.94 
PDSME(2.3)CP, I = 2,4,6 3.16 
PDSME(2.3)CP, I = 2,4,6,8 3.22 
PDSME(2.3)CP, all channels 3.24 
SME(2.3)CP 3.16 
SECP 2.33 

Resonances of 0" scattering symmetry 
MBS-SCF 30.78 
PDSME(20)CP, I = 1,3 15.07 
PDSME(20)CP, 1 = 1,3,5 21.77 
PDSME(20)CP, 1 = 1,3,5,7 23.85 
PDSME(20)CP, all channels 24.70 
SME(20)CP 24.61 
SECP 23.30 

- 

0.14 
0.58 
0.69 
0.73 
0.74 
0.70 
0.53 

- 
3.46 
6436 
8.58 
9.33 
9.26 

12.32 

It is also interesting to compare this result to that obtained using the minimum basis 
set calculation. In NZ the two unoccupied valence orbitals occurred at 7.70 eV for the 
virtual ng orbital and at 30.78 eV for the o, orbital. The zg orbital and the resonant state 
obtained from the PDSME(2.3)CP potential are compared in figure 7. The phase and 
normalization of the resonant states were chosen by first identifying the radial 
distribution functions (RDF) which had the maximum peak value. Then the whole 
function was scaled so that the radial function with the maximum value of the RDF had 
a value of one at the r where the maximum in the RDF was found. Here we can see 
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446 R. R. Lucchese and F. A. Gianturco 

Figure 6. Piece-wise diabatic potentials for e-Nz scattering: (a) PDSME(2.3)CP potential in 
the ncg scattering symmetry; (b) PDSME(20)CP potential in the o, scattering symmetry. 

that the resonant states obtained from the MBS-SCF and the scattering calculations were 
nearly identical. 

A resonant state corresponding to the G" virtual orbital was also found in the 
scattering calculations. As indicated in table 1, this state was very broad in the scattering 
calculation. It is interesting to note that none of the scattering calculations for single 
adiabatic potential yielded a resonance in qualitative agreement with the full scattering 
calculation. When the lowest two adiabatic channels were coupled together a resonant 
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-4 -3L -4 -3 -2 -1 
1 

1- 

3 

x 
s 0- 

-1 - 

z ( a d  

( d )  
Figure 7. The real part of the resonant state wavefunctions in e-NZ scattering where the dotted 

lines are nodes and the contours are separated by 0.1 am.: (a) PDSME(2.3)CP resonant 
state in zg scattering with all channels included and with ER = 3-24 eV and r = 0.74 eV; 
(b) PDSME(20)CP resonant state in q scattering with all channels included and with 
ER = 24.70 eV and r = 9.26 eV; (c) MBS-SCF orbital of zg symmetry and E = 7.70 eV; 
(c) MBS-SCF orbital of G,, symmetry and E = 30.78 eV. 
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One-selection resonances 449 

state existed which was very similar in width and position to the resonant state in the 
full calculation. The resonance in the two channel calculation was below the maximum 
in the 1 = 3 adiabatic potential in the barrier region which was 21.83 eV at r = 1.96 a.u. 
As further channels were coupled the result smoothly converged to the position and 
width found in the full SME(20)CP potential. Note that as more channels were coupled 
together the resonance energy actually rose above the barrier in the 1 = 3 potential. Thus 
the non-adiabatic coupling to the higher 1 channels increased the effective barrier height 
allowing the resonant state to be trapped at an energy where there was no apparent 
adiabatic potential barrier. 

3.2. Electron-SF6 scattering 
The scattering of electrons from SFg has been the subject of a number of theoretical 

studies (Dehmer et al. 1978, Gyemant et al. 1980, Gianturco et al. 1995). In all studies, 
five prominent resonances have been found in the FN approximation. These resonances 
can be seen in figure 2 and have been classified by symmetry and position in table 2. 

Performing an MBS-SCF (including d functions on S )  calculation lead to the 
prediction of virtual orbitals with just the symmetries found in the scattering 
calculations and at the energies indicated in table 2. The MBS calculation correctly 
predicted the existence, symmetry, and ordering of the resonant states. However the 
actual energies and the spacing of these energies were much larger than that found in 
any of our scattering calculations. There were two sources for these differences. First 
the one-electron basis set is very restricted in the MBS approximation with no diffuse 
functions which would be needed for an accurate representation of the resonant state. 
Second, the MBS-SCF calculation does not include any correlation and polarization 
effects which were approximately included in the scattering calculations through the 
VcP model potential. However, the MBS-SCF approach did include the essential physics 
needed to predict the symmetry and ordering of the negative ion resonances in e-SF6 
scattering. 

It is instructive to examine the actual orbitals which were produced in the MBS-SCF 
calculation. In figure 8 we give contour plots of the MBS-SCF virtual orbitals. The alg. 
flu, and eg orbitals are seen to be the six anti-bonding (5 orbitals between the S and the 
F atoms. The tZg orbitals are seen to be the three unoccupied d orbitals centred on the 
S atom. In figure 9 we present the real part of the resonant states obtained in the 
PDSME( 15)CP calculation. Comparing the two sets of orbital plots, it is clear that basic 
nature of the states was the same in the MBS-SCF and PDSME( 15)CP calculations. In 
particular, the characterization of the states in terms of the s, p, and d like behaviour 
around each atomic centre was the same. For example, in the tzg orbital the resonant 
state was d like around the S atom and p like around the F atoms. The resonant 
PDSME( 15)CP wavefunction did however give a much clearer picture about the 
angular behaviour of the scattered electron at large values of r. It is clear from the plots 
of the resonant state that the alg state was asymptotic ally 1 = 4, the eg state was 1 = 6, 
and the tzg state was also 1 = 6. The asymptotic behaviour of the tl, state was less clear, 
but the location of the angular nodes indicated a combination of angular momenta 
including at least up to 1 = 5. This is in contrast to the dominant angular momentum 
we found at small r which was 1 = 0 for alg, 1 = 1 for tl,, 1 = 2 for tzg, and 1 = 2 for eg. 
Thus from a qualitative analysis of the nodal structure of the resonant states, we see 
that the dominant angular momentum components changed quite dramatically from 
small r to large r. Thus any model which depended on a single angular momentum state, 
or even on a single adiabatic angular momentum state, would have missed the essential 
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Table 2. Symmetry, position, and width of resonances in e-SF6 scattering. 

Resonances of M Q  scattering symmetry 
MBS-SCF 11.73 
PDSME( 15)CP, 1 = 4 4.10 
PDSME( 15)CP, 1 = 0,4 - 0.63 
PDSME( 15)CP, 1 = 0,4,6 1.39 
PDSME( 15)CP, 1 = 0,4,6,8 2.8 1 

SME( 15)CP 5.40 
SECP 3.30 

PDSME( 15)CP, all channels 5.37 

Resonances of tl, scattering symmetry 
MBS-SCF 15-89 
PDSME( 15)CP, 1 = 5 12-78 
PDSME( 15)CP, I = 1,5 11.71 
PDSME( 15)CP, I = 1,3,5 6-41 
PDSME(l5)CP, I =  1,3,5,5’ 7.01 
PDSME( 15)CP, all channels 10.15 
SME( 15)cP 1 1.22 
SECP 9.85 

Resonances of t2g scattering symmetry 
MBS-SCF 25.76 
PDSME( 15)CP, 1 = 2,4 10.80 
PDSME( 15)CP, 1 = 2,4,6 12.35 
PDSME( 15)CP, I = 2,4,6,8 12-37 
PDSME( 15)CP, all channels 14.15 
SME( 15)CP 14-55 
SECP 13-10 

Resonances of eg scattering symmetry 
MBS-SCF 39.61 
PDSME( 15)CP, 1 = 2,4,6 23.74 
PDSME( 15)CP, 1 = 2,4,6,8 24.97 
PDSME( 15)CP, all channels 27.15 
SME( 15)CP 27.60 
SECP 28.84 

- 
0.15 
- 

0.28 
0.14 
0.33 
0.38 
0.032 

- 
1-43 
0.63 
4.34 
1.55 
1.32 
1.32 
0.92 

- 
1.56 
0.85 
0.83 
0.94 
1 -07 
1 -06 

- 
1.43 
1.16 
1.07 
1.17 
1.89 

nature of these resonances. Note that the adiabatic (or piece-wise diabatic) states 
suffered from this same limitation since they connect the same angular momentum 
states at large and small I-. 

In table 2 we also give the results for scattering on single PD radial potentials. For 
the alg and tl, symmetries we found resonances which were in good agreement in energy 
and width to those found in the scattering calculation using the full SME(15)CP 
potential. In both of these symmetries the resonant state found on the single PD potential 
was lowered in energy when the coupling to lower energy PD potentials was included. 
The energy of the resonances then increased as higher energy potentials were included 
in the calculation. Of particular interest was the alg resonance which actually became 
a bound state when only the lowest two PD channels were included. Then, as coupling 
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Figure 8. Virtual orbitals from an MBS-SCF calculation on SFs where the dotted lines are nodes 
and the contours are separated by 0.1 a.u.: (a) alg orbital with E = 11.73 eV; (b) t,, orbital 
with E = 15.89 eV; (c)  tZg orbital with E = 25.76 eV; (d)  eg orbital with E = 39.61 eV. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



One-selection resonances 453 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



454 R. R. Lucchese and F. A. Gianturco 

Figure 9. The real parts of the resonant state wavefunctions in e-SF6 scattering using the 
PDSME( 15)CP potential where the dotted lines are nodes and the contours are separated 
by 0.1 a.u.: (a) alg orbital with E = 537eV and r = 0.33eV; (6) tl, orbital with 
E = 10.15 eV and = 1.32 eV; (c) tZg orbital with E = 14.15 eV and r = 0,94 eV; ( d )  eg 
orbital with E = 27.15 eV and r = 1.07 eV. 
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to the higher PD potentials was included the state was pushed back into 'the continuum 
and again became a resonance. 

As indicated in table 2, in the eg and tzg scattering symmetries we found a situation 
similar to that which we found with the 0" resonance in e-N2 scattering. In neither the 
eg nor t2g scattering symmetries was there a resonant state in the single adiabatic 
potential scattering which corresponded to the resonant state we found in the full 
calculation. In tzg scattering symmetry, including the lowest two adiabatic radial 
potentials, it yielded the correct resonance, while in the eg scattering symmetry the 
resonant state was not found until the lowest three adiabatic channels were coupled 
together. By a comparison to the behaviour of the energy of the resonant states in the 
alg and tl, symmetries as additional channels were coupled, we see that in the tzg and 
eg scattering symmetries the non-adiabatic coupling created the resonant time delay in 
the scattering state by lowering the energy of the state below the angular momentum 
barrier. 

Additional insight into the resonant process was gained by examining the radial 
distribution functions (RDFs) of the resonant states which corresponded to the contour 
plots given in figure 9. In figure 10 we present the lowest two RDFs for the alg resonant 
state. In SF6, the F atoms are at a distance of 2.9484 a.u. from the S atom. Thus in the 
1 = 0 radial function one can clearly see that the radial node at - 2.0 a.u. was in 
agreement with the characterization of this state as being an anti-bonding 0 virtual 
orbital. In these radial distribution functions there were discontinuities at each boundary 
between diabatic regions. The extent of the discontinuity of a given distribution function 
at such a boundary was then an indication of the strength of the non-adiabatic coupling 
in that region of the potential. As can be seen in figure 10, in the region beyond the F 
atoms, between 3.0 and 4.0 a.u., the non-adiabatic coupling strongly mixed the Z = 0 and 
1 = 4  adiabatic channels. The corresponding RDF in the Z=4 channel shows the 
non-adiabatic coupling for Y < 4.0 a.u. For Y > 4.0 a.u. the decaying RDF was 
characteristic of a wavefunction in a classically forbidden region, i.e. tunnelling. Thus 
we concluded that the mechanism for the resonant trapping was the non-adiabatic 
coupling of an I = 0 state in the region of the S atom with the 1 = 4 channel where the 
electron was trapped by the angular momentum barrier. In figure 1O(c) we also give 
the RDF for the resonant state for the 1 = 4 single adiabatic channel calculation. We can 
see that the 1 = 4 resonant state was very similar to the 1 = 4 component of the full 
resonant state. Thus an alternative mechanism for the resonant state was that the particle 
was trapped in the 1 = 4 resonant state with two channels for decay: tunnelling through 
the 1 = 4 barrier and coupling to the 1 = 0 potential on which the particle could easily 
escape since there was no barrier present in that potential. The value of the RDF at large 
Y was indicative of the outward flux from the resonant state in a particular scattering 
channel. The fluxes on the Z=4 and 1=0 potentials were nearly equal for the alg 
resonance. 

The RDFs for the other resonant states are given in figures 11-13. The resonance 
in the tl, channel was very similar to that in the alg channel. The 1 = 5 potential could 
trap a resonance, whose RDF is shown in figure 1 1, which was very similar to the 1 = 5 
component of the resonant state on the full potential. In the case of tl, scattering, very 
little flux escaped by tunnelling through the barrier on the 1 = 5 potential, so that the 
main decay channel was through coupling to the lower 1 adiabatic potentials. The eg 
and tzg resonances were somewhat different from the other two resonances. The 
resonant states for both t2g and eg symmetries, shown in figures 12 and 13 respectively, 
had very little outgoing flux in the lowest 1 component. In the tzg resonance, most of 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



456 R. R. Lucchese and F. A.  Gianturco 

the outgoing flux was in the 1 = 4 channel and in the eg resonance most of the outgoing 
flux was in the I = 6 channel. Thus in both of these cases, the resonances was due to 
a non-adiabatic coupling from a low I channel in the inner region to a high I channel 
in the other region where the angular momentum barrier provided the trapping 
mechanism. 

3.3. Electron-C& scattering 
We have also performed preliminary calculations of electron scattering from 

benzene. In table 3 we give the resonance energies in the MBS-SCF and PDSME( 15)CP 
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r (au) 
(4 

Figure 10. Radial distribution functions for alg resonant states in e-SF6 scattering obtained with 
the PDSME(15)CP potential: (a) I =  ORDF for the resonant state computed using 
all channels with E = 5.37 eV and r = 0.33 eV; (b) 1 = 4 RDF for the same state as in (a); 
(c) 1 = 4 RDF for the resonant state obtained using only one channel with E = 4-10 eV and 
r = 0.15 eV. 

approximations. All correspondences indicated in the table between the MBS-SCF 
states and the PDSME( 15)CP resonant states were assigned on the basis of energy and 
symmetry. With only one exception, all of the resonances using the MBS-SCF were 
found in the PDSME(15)CP calculation, although the ordering of the states was 
somewhat different in the two calculations. The lowest two resonant wavefunctions in 
this system were n type orbitals. All of the other resonances could be characterized as 
anti-bonding CT states. In figure 14 the contours of the ezu and bzg n resonant states 
obtained from the PDSME( 15)CP calculation are plotted in a plane 0.75 a.u. above the 
plane of the molecule. These states were qualitatively in agreement with the MBS-SCF 
virtual orbitals. Including the plane of the molecule, which is a nodal plane for the n 
states, and the nodal planes evidence in figure 14, the nodal structures of the resonant 
states indicated that the e2,, resonance was trapped in an I = 3 angular momentum barrier 
and the bZg state was trapped in an I = 4 angular momentum barrier. 

Since all of the o resonant states in e-C6H6 scattering were fairly broad, the resonant 
enhancement of the cross-sections would be overlapping. Thus in the final total 
cross-section few of these resonances would be expected to yield a distinct feature. One 
particularly interesting feature in the alg resonances was the build-up of probability 
density in the central region inside of the ring. In figure 15 the resonant wavefunction 
of the highest alg resonance is shown. The nodal structure of this state indicated that 
the adiabatic potential with an 1 = 6 angular momentum barrier was providing the 
trapping mechanism for this state. Although in e-CsH6 scattering this resonance was 
broad, it suggests the possibility of resonant states which do not correspond to valence 
virtual orbitals in high symmetry cage type molecules such as c60. 
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r (ad 
(dl 

Figure 1 1 .  Radial distribution functions for tl, resonant states in e-SFd scattering obtained with 
the PDSME(l5)CP potential: (a) 1 = 1 RDF for the resonant state computed using all 
channels with E = 10.15 eV and f = 1 a32 eV; (b) I = 3 RDF for the same state as in (a); 
(c) 1 = 5 RDF for the same state as in (a); ( d )  1 = 5 RDF for the resonant state obtained 
using only one channel with E = 12-78 eV and r = 1-43 eV. 
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Figure 12. Radial distribution functions for the tzg resonant state in e-SF6 scattering obtained 
with the PDSME( 15)CP potential: (a)  I = 2 RDF for the resonant state computed using all 
channels with E = 14.15 eV and r = 0.94 eV; (bO 1 = 4 RDF for the same state as in (a). 
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Figure 13. Radial distribution functions for the eg resonant state in e-SF6 scattering obtained 
with the PDSME( 15)CP potential: (a) 1 = 2 RDF for the resonant state computed using all 
channels with E = 27.15 eV and r = 1.07 eV; (b) I = 4 RDF for the same state as in (a); 
(c) I = 6RDF for the same state as in (a). 

Table 3. Symmetry, position, and width or resonances in e-C6H6 Scattering. 

4.66 
9.02 

12-26 
12-32 
15.46 
- 

16.53 
21.49 
21.96 
24.48 
25.73 

1.50 
2-26 
4.75 
6.78 
7.04 

12.82 
4.82 

14.62 
5.37 

10.09 

- 

7.30 
13.66 
17-67 
15-79 
19.94 
24.05 
19.58 
29.48 
24.34 
3 1.22 
- 

4. Conclusions 
Negative ion resonances in electron-molecule scattering are the primary structural 

feature in the computed and measured cross-sections. Thus a detailed understanding of 
these resonances is essential to a complete understanding of low-energy electron-mol- 
ecule scattering. The MBS-SCF calculation has been seen to predict symmetries and 
approximate energy of all of the important resonances in the systems considered here. 
In order to determine the width and trapping mechanism of the resonant state 
corresponding to the MBS-SCF virtual orbital, we have analysed the scattering problem 
using the PDSMECP model potential. The resonances due to the PDSMECP potential 
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Figure 14. The real parts of the resonant state wavefunctions in e+& scattering using the 
PDSME(15)CP potential where the dotted lines are nodes, the contours are separated by 
0.05 a.u., and z = 0.75 a.u.: (a) ezu orbital with E = 4.66 eV and r = 1.50 eV; (b) b2g orbital 
with E = 9.02 eV and r = 2-26 eV. 
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Figure 15. The real part of the resonant state wavefunction of alg symmetry in e-CsHs scattering 
using the PDSME(l5)CP potential where the dotted lines are nodes, the contours are 
separated by 0.1 am, z = 0.0a.u., and with E = 25.73eV and r = 10.09eV. 

could be located using a direct search for poles of the S matrix in the complex energy 
plane. In all of the systems considered here, examination of the resonance state showed 
that angular momentum barriers provided the trapping mechanism. For some of the 
resonances, a single adiabatic potential trapped the resonant state. For other resonances, 
non-adiabatic coupling between a few adiabatic potentials was needed to trap the 
resonant state. Finally, the full SECP calculation could be performed to compare with 
actual experimental scattering cross-sections. 

We have thus presented here a formalism which allowed the study of resonances 
in gas-phase molecular systems which were fairly compact and having no more than 
- 100 electrons. The combination of SECP, PDSMECP, and MBS-SCF calculations 
provided an interconnected set of models which could predict the location and width 
of the resonances and allowed a detailed understanding of the trapping mechanism. The 
three examples considered here illustrate the utility of this approach and indicate 
possible avenues for further study. 
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